585 research outputs found

    Microcomputer array processor system

    Get PDF
    The microcomputer array system is discussed with specific attention given to its electronic warware applications. Several aspects of the system architecture are described as well as some of its distinctive characteristics

    Unveiling hidden structures in the Coma cluster

    Get PDF
    We have assembled a large data-set of 613 galaxy redshifts in the Coma cluster, the largest presently available for a cluster of galaxies. We have defined a sample of cluster members complete to b26.5=20.0_{26.5}=20.0, using a membership criterion based on the galaxy velocity, when available, or on the galaxy magnitude and colour, otherwise. Such a data set allows us to define nearly complete samples within a region of 1~\Mpc\ radius, with a sufficient number of galaxies per sample to make statistical analyses possible. Using this sample and the {\em ROSAT} PSPC X--ray image of the cluster, we have re-analyzed the structure and kinematics of Coma, by applying the wavelet and adaptive kernel techniques. A striking coincidence of features is found in the distributions of galaxies and hot intracluster gas. The two central dominant galaxies, NGC4874 and NGC4889, are surrounded by two galaxy groups, mostly populated with galaxies brighter than b26.5=17_{26.5}=17 and well separated in velocity space. On the contrary, the fainter galaxies tend to form a single smooth structure with a central peak coinciding in position with a secondary peak detected in X--rays, and located between the two dominant galaxies; we suggest to identify this structure with the main body of the Coma cluster. A continuous velocity gradient is found in the central distribution of these faint galaxies, a probable signature of tidal interactions rather than rotation. There is evidence for a bound population of bright galaxies around other brightest cluster members. Altogether, the Coma cluster structure seems to be better traced by the faint galaxy population, the bright galaxies being located in subclusters. We discuss this evidence in terms of an ongoing accretion of groups onto the cluster.Comment: to appear in A&A, 19 pages, uuencoded gzipped postscript fil

    On the galaxy luminosity function in the central regions of the Coma cluster

    Get PDF
    We have obtained new redshifts for 265 objects in the central 48~×\times~25~arcmin2^2 region of the Coma cluster. When supplemented with literature data, our redshift sample is 95~\% complete up to a magnitude b26.5_{26.5}=18.0 (the magnitudes are taken from the photometric sample of Godwin et al. 1983). Using redshift-confirmed membership for 205 galaxies, and the location in the colour-magnitude diagram for another 91 galaxies, we have built a sample of cluster members which is complete up to b26.5_{26.5}=20.0. We show that the Coma cluster luminosity function cannot be adequately fitted by a single Schechter (1976) function, because of a dip in the magnitude distribution at b26.5_{26.5}\sim17. The superposition of an Erlang (or a Gauss) and a Schechter function provides a significantly better fit. We compare the luminosity function of Coma to those of other clusters, and of the field. Luminosity functions for rich clusters look similar, with a maximum at Mb19.5+5×logh50M_{b} \simeq -19.5 + 5 \times \log h_{50}, while the Virgo and the field luminosity functions show a nearly monotonic behaviour. These differences may be produced by physical processes related to the environment which affect the luminosities of a certain class of cluster galaxies.Comment: 7 pages, uuencoded postscript file (figures included) Accepted for publication on A&

    A Population of Compact Elliptical Galaxies Detected with the Virtual Observatory

    Full text link
    Compact elliptical galaxies are characterized by small sizes and high stellar densities. They are thought to form through tidal stripping of massive progenitors. However, only a handful of them were known, preventing us from understanding the role played by this mechanism in galaxy evolution. We present a population of 21 compact elliptical galaxies gathered with the Virtual Observatory. Follow-up spectroscopy and data mining, using high-resolution images and large databases, show that all the galaxies exhibit old metal-rich stellar populations different from those of dwarf elliptical galaxies of similar masses but similar to those of more massive early-type galaxies, supporting the tidal stripping scenario. Their internal properties are reproduced by numerical simulations, which result in compact dynamically hot remnants resembling the galaxies in our sample.Comment: 26 pages, 5 figures, 2 tables. Science in press, published in Science Express on 1/Oct/2009. Full resolution figures in the supplementary online material are available from the Science Magazine web-sit

    New Structure In The Shapley Supercluster

    Get PDF
    We present new radial velocities for 189 galaxies in a 91 sq. deg region of the Shapley supercluster measured with the FLAIR-II spectrograph on the UK Schmidt Telescope. The data reveal two sheets of galaxies linking the major concentrations of the supercluster. The supercluster is not flattened in Declination as was suggested previously and it may be at least 30 percent larger than previously thought with a correspondingly larger contribution to the motion of the Local Group.Comment: LaTex: 2 pages, 1 figure, includes conf_iap.sty style file. To appear in proceedings of The 14th IAP Colloquium: Wide Field Surveys in Cosmology, held in Paris, 1998 May 26--30, eds. S.Colombi, Y.Mellie

    Effects of ultraviolet and visible radiation on the cellular concentrations of dimethylsulfoniopropionate (DMSP) in Emiliania huxleyi (strain L)

    Get PDF
    Emiliania huxleyi is an important component of the global carbon and sulfur cycles and is known to be sensitive to ultraviolet (UV) radiation. We investigated the influence of radiation intensity and of short-term exposure to UV radiation on the per-cell amount and intracellular concentration of dimethylsulfoniopropionate (DMSP). E. huxleyi (strain L) was exposed to artificial radiation intensities similar to those at 15 in (700 mumol PAR [photosynthetically active radiation] m(-2) s(-1)) and 25 in depth (400 mumol PAR m(-2) s(-1)) in the subtropical Atlantic Ocean. Exposure to UV radiation led to a 10 to 25% increase in the per-cell amount of DMSP as compared to E. huxleyi exposed to only PAR, whereas photosynthetic activity (measured via oxygen production) of UV-exposed E. huxleyi was reduced by 18 to 22%. Furthermore, the intracellular DMSP concentration was always higher in PAR + UV-exposed E. huxleyi than in PAR-exposed E. huxleyi, despite the small but significant increase in cell volume of E. huxleyi after exposure to PAR + UV as compared to PAR exposure only. A shift of the radiation conditions to higher levels resulted in a short-term increase in the per-cell amount and intracellular concentration of DMSP. E. huxleyi cultured in turbidostats under different radiation intensities (ranging from 5.6 to 400 mumol PAR m(-2) s(-1)) revealed a significant monotonical increase in the per-cell amount and the intracellular concentration of DMSP with increasing radiation intensity

    Spectral Properties of Holstein and Breathing Polarons

    Full text link
    We calculate the spectral properties of the one-dimensional Holstein and breathing polarons using the self-consistent Born approximation. The Holstein model electron-phonon coupling is momentum independent while the breathing coupling increases monotonically with the phonon momentum. We find that for a linear or tight binding electron dispersion: i) for the same value of the dimensionless coupling the quasiparticle renormalization at small momentum in the breathing polaron is much smaller, ii) the quasiparticle renormalization at small momentum in the breathing polaron increases with phonon frequency unlike in the Holstein model where it decreases, iii) in the Holstein model the quasiparticle dispersion displays a kink and a small gap at an excitation energy equal to the phonon frequency w0 while in the breathing model it displays two gaps, one at excitation energy w0 and another one at 2w0. These differences have two reasons: first, the momentum of the relevant scattered phonons increases with increasing polaron momentum and second, the breathing bare coupling is an increasing function of the phonon momentum. These result in an effective electron-phonon coupling for the breathing model which is an increasing function of the total polaron momentum, such that the small momentum polaron is in the weak coupling regime while the large momentum one is in the strong coupling regime. However the first reason does not hold if the free electron dispersion has low energy states separated by large momentum, as in a higher dimensional system for example, in which situation the difference between the two models becomes less significant.Comment: 11 pages, 10 figure

    The rich cluster of galaxies ABCG 85.I. X-ray analysis

    Full text link
    We present an X-ray analysis of the rich cluster ABCG 85 based on ROSAT PSPC data. By applying an improved wavelet analysis, we show that our view of this cluster is notably changed from what was previously believed (a main region and a south blob). The main emission comes from the central part of the main body of the cluster on which is superimposed that of a foreground group of galaxies. The foreground group and the main cluster are separated (if redshifts are cosmological) by 46 1/h_50 Mpc. The southern blob is clearly not a group: it is resolved into X-ray emitting galaxies (in particular the second more luminous galaxy of the main cluster). Several X-ray features are identified with bright galaxies. We performed a spectral analysis and derived the temperature (T), metallicity (Z) and hydrogen column density NH. The global quantities are: T=4keV (in agreement with the velocity dispersion of 760km/s) and Z=0.2ZZ=0.2Z_\odot. We cannot derive accurate gradients for these quantities with our data, but there is strong evidence that the temperature is lower (2.8keV\sim 2.8 keV) and the metallicity much higher (Z 0.8Z\sim 0.8 Z_\odot) in the very centre (within about 50 1/h_50 kpc). We present a pixel by pixel method to model the physical properties of the X-ray gas and derive its density distribution. We apply classical methods to estimate the dynamical, gas and stellar masses, as well as the cooling time and cooling flow characteristics. At the limiting radius of the image (1.4 1/h_50 Mpc), we find MDyn(2.12.9)10141/h50MM_{\rm Dyn}\sim (2.1-2.9)10^{14} 1/h_50 M_{\odot},, M_{gas}/M_{Dyn}\sim 0.18 h_{50}^{-1.5}.Thestellarmassis. The stellar mass is 6.7\ 10^{12}M_{\odot},givingamasstolightratioof, giving a mass to light ratio of M/L_{V}\sim 300$. The cooling time is estimated for different models, leading to a cooling radius of 30-80 kpc depending on theComment: 14 pages incl 16 postscript figures available, 4 tables, corrected stellar mass. Accepted for publication in Astronomy & Astrophysic
    corecore